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OVERVIEW

Timeline Barriers
* Project start date: October 2016 * Barriers
* Project end date: September 2021 - Energy density
* 65 % complete - Cycle life
Budget - Abuse Tolerance
* Total project funding * Targets
- DOE share: $50M - High-energy-density high-nickel
* Funding received in FY 2019 cathodes with long cycle life and
- $10M acceptable air and thermal stability
* Funding for FY 2020 Partners
- $10M » PNNL, BNL, INL, SLAC, BU, UCSD, UW
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RELEVANCE

Relevance

* Lithium-ion cells with high-energy density and long cycle life at an affordable
cost can accelerate vehicle electrification

Objectives
* Develop high-energy, long-life, stable high-nickel layered cathodes
- High-nickel layered oxides with a specific capacity of > 200 mA h g

- Stabilization strategies for long cycle, air, and thermal stabilities
- Optimization strategies for compatibility with lithium-metal anode

* Scale-up of high-nickel cathodes with an in-depth characterization
- Scale-up synthesis of hydroxide precursors and lithiation processes
- Assessment of degradation mechanisms with advanced characterization
- Assessment of lithium-metal anode paired with high-Ni cathodes
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MILESTONES

Month/Year Milestone Status
December | Assessment of dendrite growth and surface chemistry of Li-metal Completed
2019 anode paired with different high-Ni layered oxide cathodes P
March Investigation of the current density impact on Li-metal anodes Completed
2020 paired with optimized high-Ni layered oxide cathodes P
June Investigation of lithiophilic matrices as a Li host for efficient onaoin
2020 lithium plating/stripping and Li/composite electrolyte interfaces Joing
Scale up of the hydroxide precursor (> 1 kg per batch) and
September | lithiation (> 200 g per batch) processes of high-Ni layered oxide onaoin
2020 cathodes that are capable of delivering > 200 mA h gt with > Joing
80% capacity retention over 200 cycles
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APPROACH

* Increase energy density and reduce cost: Increase nickel content in
layered-oxide cathodes

* Precursor scale-up: Coprecipitation of hydroxide precursors with a
tank reactor by controlling pH, temperature, and pumping rate

* Lithiation Scale-up: Calcination of hydroxide precursors with lithium
hydroxide by controlling oxygen gas flow, temperature, and duration

* Assessment: Evaluation in pouch cells and characterization after
extended cycling to fully understand the degradation mechanisms

BATTERY =
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TECHNICAL ACCOMPLISHMENTS AND PROGRESS

* Scale-up: Samples with Ni contents up to 94% have been scaled up
and distributed to other team members as needed

* Degradation mechanisms: Major causes of degradation have been
established by analyzing after extended cycling with advanced
characterization methodologies

* Stability: Cycle life and air and thermal stability have been enhanced
with appropriate doping and/or surface stabilization

* Pairing with Li-metal anode: A 3D lithiophilic framework has been
developed as an efficient host for Li and paired with high-Ni cathodes

* Chemical crossover: Crossover between high-Ni cathode and Li-metal
anode has begun to be explored, but hampered by limited Li cyclability
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LITHIATION SCALE-UP OF LiNi, ;Mn, ,C0, ,0, (811)
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* Lithiation scaled-up (220 g) 811 exhibits performance similar to the small batch (20 g)
« Air-calcined and oxygen-calcined 811 exhibit similar cycling performances
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IMPACT OF NICKEL CONTENT ON CYCLE LIFE
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* NC 9406 offers higher capacity, but suffers from more severe capacity fade than
NMC 811, particularly at large number of cycles (e.g. 1,500 cycles)
BATTERY M J. Li and A. Manthiram, Advanced Energy Materials 9, 1902731 (2019)
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IMPACT OF NICKEL CONTENT ON LATTICE STABILITY
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* NC 9406 suffers from more severe lattice distortion than NMC 811, resulting in
structural disintegration
BATTERY J. Li and A. Manthiram, Advanced Energy Materials 9, 1902731 (2019)

CONSORTIUM

University of Texas at Austin 9



IMPACT OF NICKEL CONTENT ON PARTICLE INTEGRITY
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* NC 9406 shows severe cracking & pulverization at large number of cycles (1,500)

BATTERY /2% 3 Ljand A. Manthiram, Advanced Energy Materials 9, 1902731 (2019)
v
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IMPACT OF NICKEL CONTENT ON METAL DISSOLUTION AND SEI
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* AEI on graphite paired with NC 9406 is much thicker than that paired with NMC 811
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* NC 9406 exhibits more severe transition-metal dissolution and Li trapping than NMC 811
BATTERY J. Li and A. Manthiram, Advanced Energy Materials 9, 1902731 (2019)
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SURFACE STABILIZATION WITH POLYANILINE IN LiNi, {Mn, ,C0, ,0,
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* PANI reduces surface reactivity, transition-metal dissolution, and SEI thickness on
the anode (by six times), resulting in better cycle life and rate capability

BATTERY, B4R J. Li, C. H. Chang, and A. Manthiram, Chemistry of Materials 32,759 (2020)
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3D LITHIOPHILIC FRAMEWORK AS A Li HOST FOR 811
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* MO,N@CNF spatially homogenizes current distribution and lithium-ion flux with a
lower overpotential, assisted by metallic Mo serving as a nucleation site for Li
BATTERY ] L. Luo, J. Li, H. Yaghoobnejad Asl, and A. Manthiram, Advanced Materials 31, 1904537: 1 - 9 (2019).
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CROSSOVER EFFECTS IN LITHIUM-METAL BATTERIES
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e Similar SEI on Li metal paired with Li or NMC due to limited cycle life of Li anode
* NMC paired with Li-metal anode has thicker SEI and much higher impedance
BATTERY even after one cycle than that paired with graphite
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THERMAL STABILITY OF HIGH-NICKEL CATHODES
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* Thermal stability decreases with increasing Ni content, but both thermal stability
and air stability can be improved with appropriate doping and surface stabilization
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RESPONSE TO REVIEWERS’ COMMENTS

No presentation was given in the previous year
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COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS

* Peter Khalifah and Xiao-Qing Yang, Brookhaven National Laboratory
Structural and morphological characterization of a series of high-nickel NMCs

- Synchrotron X-ray scattering, neutron scattering, and electron microscopy

e Stanley Whittingham at Binghamton University
Thermal stability assessment of a series of high-nickel NMCs

* Bor Yann Liaw, Idaho National Laboratory
In-depth electrochemical analysis of NMC 811 with different particle sizes

* Wu Xu, Pacific Northwest National Laboratory
Evaluation of NC 9406 with different electrolyte compositions

* Ping Liu, University of California at San Diego
Effect of secondary particle size on electrode architecture (NMC701515)

* Jihui Yang, University of Washington at Seattle
Structural characterization of Al-doped NC9406 with in-situ X-ray scattering
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REMAINING CHALLENGES AND BARRIERS

* Challenge/Barrier 1. Although the transition-metal hydroxide precursor can be
obtained in 2 kg batches, the lithiation process with optimal oxygen gas flow and
calcination temperature and duration remains a challenge to scale up, especially
for a university lab

* Challenge/Barrier 2: The exponential decline in cyclability, thermal stability, and
air stability with nickel contents above 80 % requires a judicious control of the
cathode with doping and surface stabilization along with electrolytes compatible
with both the cathode and lithium-metal anode

* Challenge/Barrier 3: The limited cycle life of lithium-metal anodes hampers a
comprehensive analysis of the impact of cathode nickel content on the lithium-
metal anode and its comparison with the well-established graphite anode
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PROPOSED FUTURE WORK

* FY2020

- Assess the impact of current density on Li-metal anode when paired with high-
nickel cathodes

- Explore lithiophilic hosts for Li-metal anode for enhancing the efficiency and cycle
stability of Li metal and pair with high-nickel cathodes

- Enhance the cycle life of cells assembled with Li-metal anode and high-nickel
cathodes with electrolyte additives

°FY2021

- Fabricate anode-free cells with high-nickel cathodes and assess Li-metal cycling
efficiency to have a better understanding of the dynamics

- Utilize the understanding gained to improve the cycle life with appropriate additives
or cell engineering

BATTERY Any proposed future work is subject to change based on funding levels _ _ _



SUMMARY

* Scale-up of transition-metal hydroxide precursors (2 kg per batch) and lithiation process (200 g per
batch) has been demonstrated
- high-quality samples with consistent particle size, morphology, and performance

* The exponential effect of increasing nickel content from 80% to 94% has been illustrated by
comparing NMC 811 and NC 9406
- rapid capacity fade due to phase transition, cracking, transition-metal dissolution and crossover,
and thick SEI formation and Li trapping at anode

* Surface stabilization with polyaniline improves performance
- Improves cyclability and rate capability due a reduction in transition-metal dissolution, crossover to
anode, and SEI thickness on the anode

* 3D lithiophilic hosts for Li metal offer longer cycle life with NMC cathodes

e Effect of transition-metal crossover on Li metal could not be established due to limited cycle life, but
crossover from Li-metal anode seems to impact the cathode

* Thermal stability decreases with Ni content, but doping helps to improve it
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